{-# OPTIONS --without-K #-}
open import Agda.Primitive
open import 1-equality
infixl 50 _∘_
_∘_ :
{ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
{C : B → Set ℓ₃} →
((b : B) → C b) →
(g : A → B) →
(a : A) →
C (g a)
(f ∘ g) x = f ( g x )
ass[∘] :
{ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
{C : Set ℓ₃} →
{D : Set ℓ₄} →
(f : C → D) →
(g : B → C) →
(h : A → B) →
(f ∘ g) ∘ h ≡ f ∘ (g ∘ h)
ass[∘] = λ f g h → refl
≡∘ :
{ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
{C : Set ℓ₃} →
{f g : B → C} →
(f ≡ g) →
(h : A → B) →
(f ∘ h ≡ g ∘ h)
≡∘ refl h = refl
∘≡ :
{ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
{C : Set ℓ₃} →
{f g : A → B} →
(h : B → C) →
(f ≡ g) →
(h ∘ f ≡ h ∘ g)
∘≡ h refl = refl