{-# OPTIONS --without-K #-}
open import Agda.Primitive
open import 1-equality
infixl 50 _∘'_
_∘'_ :
{ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : A → Set ℓ₂} →
{C : (a : A) → B a → Set ℓ₃} →
(f : Π A λ a → Π (B a) λ b → C a b) →
(g : Π A B) →
(a : A) →
C a (g a)
(f ∘' g) x = f x (g x)
S = _∘'_
K : {ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
(x : A) →
(y : B) →
A
K x y = x
I :
{ℓ : Level} →
{X : Set ℓ} →
(X → X)
I x = x
modus·ponens : {ℓ₁ ℓ₂ ℓ₃ : Level} →
{A : Set ℓ₁} →
{B : Set ℓ₂} →
(x : A) →
(y : A → B) →
B
modus·ponens x y = y x